Abstract

We present a new constant-pressure ab initio molecular dynamics method suitable for studying, e.g., pressure-induced structural transformations in finite nonperiodic systems such as clusters. We immerse an ab initio treated cluster into a model classical liquid, described by a soft-sphere potential, which acts as a pressure reservoir. The pressure is varied by tuning the parameter of the liquid potential. We apply the method to a Si35H36 cluster, which undergoes a pressure-induced amorphization at approximately 35 GPa, and remains in a disordered state even upon pressure release.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.