Abstract

The development of reliable, cost-effective polymer architectures for use as anion exchange membranes (AEMs) is an important challenge facing emerging electrochemical device technologies. Elucidation of key design principles underlying these electrolytes requires a fundamental understanding of the hydroxide ion transport mechanism in the aqueous region of an AEM. To this end, we have carried out a series of atomistic ab initio molecular dynamics calculations. To mimic the complex AEM nanoconfined environment, we employ graphane bilayers or carbon nanotubes to which selected cationic groups are attached and which are subsequently filled with water and hydroxide ions to achieve target water-to-cation ratios and overall electrical neutrality. The complex structure of water under nanoconfinement differs from the bulk and is controlled by the shape and size of the confining volume. Consequently, the local hydroxide ion diffusion mechanisms in different chemical and geometric environments is also seen to differ...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.