Abstract

Dissociative electron attachment, that is, the cleavage of chemical bonds induced by low-energy electrons, is difficult to model with standard quantum-chemical methods because the involved anions are not bound but subject to autodetachment. We present here a new computational development for simulating the dynamics of temporary anions on complex-valued potential energy surfaces. The imaginary part of these surfaces describes electron loss, whereas the gradient of the real part represents the force on the nuclei. In our method, the forces are computed analytically based on Hartree–Fock theory with a complex absorbing potential. Ab initio molecular dynamics simulations for the temporary anions of dinitrogen, ethylene, chloroethane, and the five mono- to tetrachlorinated ethylenes show qualitative agreement with experiments and offer mechanistic insights into dissociative electron attachments. The results also demonstrate how our method evenhandedly deals with molecules that may undergo dissociation upon electron attachment and those which only undergo autodetachment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call