Abstract

In this study, we investigate the structure of the Pt(111)-water interface in an alkaline environment with large OH coverages of 1/3, 2/3 and 1 monolayer using a large well-equilibrated system. We observe that the OH coverage influences both the orientational distribution of the water molecules and their density, with more structure associated with higher coverage. At the same time, there is evidence of a highly dynamic hydrogen bond network on the lower coverage systems with substantial exchange of water between the surface and the solvent. In addition to OH and H2O species, which are preferentially located at the top sites, the 1/3 and 2/3 monolayer surfaces also contain O atoms, which are relatively stable and prefer the hollow sites. In contrast, the 1 monolayer surface shows none of these dynamics, and is unlikely to be active. The dynamic coexistence of O, OH and H2O on Pt(111) electrodes in alkaline conditions necessitates the investigation of several possible reaction paths for processess like ORR and water splitting. Finally, the exchange processes observed between the solvent and the interface underscore the need to explicitly include liquid water in simulations of systems similar to Pt(111).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.