Abstract

All terminations of the (1x1) rutile (110), (101), (001), (100) and (111) surfaces are classified according to their electrostatic polarity. Six are found to be non-polar. The plane-wave density functional theory code CASTEP is used with a GGA-PBE exchange-correlation functional and a vacuum/material slab supercell method to calculate the surface energy density of symmetric thin rutile films with the six non-polar terminations in vacuum. The ratio of the surface energy densities of a rutile crystal with {111} and {110} facets in water is deduced using Lagrange multipliers and found to be consistent with the DFT vacuum results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.