Abstract

G protein coupled receptors of the secretin family are activated by peptide hormones of about 30 residues in length. There is considerable sequence homology within both the hormone and receptor families. The receptors possess in addition to the integral membrane domain a characteristic extracellular domain of about 120 residues in length, having conserved cysteine residues, which are involved in disulphide bridge formation, and tryptophanes, which have been shown to be critical for hormone binding. This extracellular domain does not have detectable homology to any known protein fold. In order to be able to propose a structure for this domain we have used ab initio prediction methods combined with constraints based on experimental results for the disulphide connectivity. The results of computational tools for predicting secondary structure and accessibility, together with ligand binding and mutational data and other structural considerations were used in the ab initio protein folding programs dragon and gadget and also the simpler program ramble, which was able to explore different permutations of disulphide bond connectivity, tryptophan side chain orientation and chain topology. The methods generated a limited number of plausible models but no single unique solution was found under the constraints. One of these was refined into a full atomic model that contained a possible peptide binding site comprising the most conserved residues.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.