Abstract

Lead zirconate titanate Pb(ZrxTi1−x)O3 solid solution is considered as one of the most advanced ferroelectric and piezoelectric materials. Consequent variation of Zr (Ti) concentrations significantly affects the atomic and electronic properties of PZT structures. To perform ab initio modelling of different morphologies for lead zirconate titanate, we are using approach of hybrid density functional B3PW as implemented in CRYSTAL14 computer code. In this study, we are performing large-scale calculations of such PZT parameters as optimized lattice constants, atomic charges and bond populations, as well as band structure (e.g., band gap) and density of states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.