Abstract
Slip activity in body-centered cubic chromium is modeled by means of ab initio calculation of screw dislocations core properties and Peierls potential. As dislocations having 1/2<111> Burgers vector and also <100>, both gliding in {110} crystallographic planes have been reported experimentally, both screw dislocations are modeled. A generalized yield criterion incorporating physical ingredients necessary to account for deviations from the Schmid law is obtained for <111>{110} and <100>{110} slip systems. We report a broad range of crystal orientations for which <100> screw dislocations are easier to activate than the conventional 1/2<111> in tension and compression. These results hold for both the non-magnetic and antiferromagnetic phases of body-centered cubic chromium, with only a marginal effect of magnetism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.