Abstract
In order to investigate the time evolutions of electron and hole distributions in weakly and strongly coupled H 2 dimer models, we employ a novel dynamic exciton expression derived from the exciton density matrices calculated by the quantum master equation combined with the ab initio molecular orbital (MO)–configuration interaction (CI) method. The oscillation of exciton distribution over the monomers is observed in case of small inter-monomer distance, where the coupled dipole approximation is invalid. The result originates in the covalent character of inter-monomer interaction in the first excited state, i.e., delocalized character of LUMO distribution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.