Abstract

The electronic, structural and phonon properties of antiferromagnetic triclinic CuWO4 have been studied using the first-principles spin-polarized linear combination of atomic orbital (LCAO) calculations based on the hybrid exchange–correlation density functional (DFT)/Hartree–Fock (HF) scheme. In addition, the local atomic structure around both Cu and W atoms has been probed using extended X-ray absorption fine structure (EXAFS) spectroscopy. We show that, by using the hybrid DFT–HF functional, one can accurately and simultaneously describe the atomic structure (the unit cell parameters and the atomic fractional coordinates), the band gap and the phonon frequencies. In agreement with our EXAFS results, the LCAO calculations reproduce a strong distortion of both the CuO6 and the WO6 octahedra, which occur due to the first-order and second-order Jahn–Teller effects, respectively. We found that the HF admixture of 13–16%, which is implemented in the PBE0–13% and WCGGA–PBE-16% functionals, produces the best result for CuWO4. The calculated properties agree well with the available experimental data provided by diffraction, optical, X-ray photoelectron and Raman spectroscopies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.