Abstract
This work reports a detailed mechanism of the initial thermal pyrolysis of isopropyl propionate, (C2H5C(=O)OCH(CH3)2), an important biodiesel additive/surrogate, for a wide range of T = 500–2000 K and P = 7.6–76 000 Torr. The detailed kinetic behaviors of the title reaction on the potential energy surface constructed at the CBS-QB3 level were investigated using the RRKM-based master equation (RRKM-ME) rate model, including hindered internal rotation (HIR) and tunneling corrections. It is revealed that the C3H6 elimination occurring via a six-centered retro-ene transition state is dominant at low temperatures, while the homolytic fission of the C–C bonds becomes more competitive at higher temperatures. The tunneling treatment is found to slightly increase the rate constant at low temperatures (e.g., ∼1.59 times at 563 K), while the HIR treatment, being important at high temperatures, decreases the rate (e.g., by 5.9 times at 2000 K). Showing a good agreement with experiments in low-temperature kinetics, the kinetic model reveals that the pressure effect should be taken into account at high temperatures. Finally, the temperature- and pressure-dependent kinetic mechanism, consisting of the calculated thermodynamic and kinetic data, is provided for further modeling and simulation of any related systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.