Abstract

The decomposition kinetics of the hydroxybutyl and butoxy radicals (C4H9O) arising via H abstraction from n-butanol were studied theoretically with ab initio transition-state-theory-based master equation analyses. Stationary points on the C4H9O potential energy surface were calculated at either the RQCISD(T)/CBS//B3LYP/6-311++G(d,p) level or the RQCISD(T)/CBS//CASPT2/aug-cc-pVDZ level. Unimolecular pressure- and temperature-dependent rate coefficients were calculated over broad ranges of temperature (300-2500 K) and pressure (1.3 × 10(-3) to 10(2) atm) by solving the time-dependent multiple-well master equation. The "well merging" phenomenon was observed and analyzed for its influence on the branching ratios and rate coefficients. The theoretical predictions were compared with the available experimental and theoretical data and any discrepancies were analyzed. The predicted rate coefficients are represented with forms that may readily be used in combustion modeling of n-butanol.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call