Abstract

In the present paper, the possible ion associated species in pure Na(2)SO(4) and mixed Na(2)SO(4)/MgSO(4) aqueous solutions are investigated via the ab initio method at the HF/6-31+G∗ level. The vibrational v(1)-SO(4)(2-) band is analyzed. For the unhydrated species, when the number of metal ions around the SO(4)(2-) ion is less than 3, the dominating effect to the v(1)-SO(4)(2-) band is the polarization of the cations, while the M-O bonding will be dominating as the number is equal to or more than 3. For the hydrated species, the coordinated structures of the Na(+) ion in all ion pairs are not stable due to the strong effect of the SO(4)(2-) ion but relatively stable in the triple ion (TI) clusters since there are fewer vacant hydration sites around the SO(4)(2-). The v(1)-SO(4)(2-) frequencies are close to that of the hydrated SO(4)(2-) ion in the ion pairs and larger in both Na(2)SO(4) and Na(2)SO(4)/MgSO(4) TI clusters. On the basis of our calculated results, the evolvement of Raman spectra in the Na(2)SO(4)/MgSO(4) droplet with the molar ratio of 1:1 is explained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call