Abstract

The paper reports structural, electronic, vibrational, optical, and thermodynamic properties of the cubic structure of yttrium arsenide (YAs) calculated by density functional calculations. The calculated lattice constant and electronic band gap are 6.445 A and 2.49 eV (direct band gap at Γ point), respectively. The stability of the cubic structure of YAs is also confirmed by phonon dispersion curve. The refractive index using the complex dielectric function of cubic YAs is 2.57 in the near-ultraviolet region. The thermodynamic properties are based on the function of temperature, which is investigated using the quasi-harmonic approximation and show that the heat capacity has been become constant above room temperature at 400 K which concludes the maximum stability of phase. Our theoretical results show that the absorption spectrum of YAs has a possible application for future devices in the near-ultraviolet region as an inner layer coating under UV absorbers, which is the main interest to optoelectronic-devices such as light emission and light detectors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.