Abstract
The configurations of cationic water cluster (H2O) 13 + have been explored through the particle swarm optimization algorithm conjunct with computational quantum chemistry approaches. Geometry optimization and vibrational analysis for the 15 possible low-lying clusters were calculated at the MPW1K/6–31++G** level as well as infrared spectrum calculation. Through various hybrid exchange–correlation functionals of density functional theory in combination with zero-point vibrational energies correction, we can definitely get the relative stable configurations and discuss the effect on the relative energy order of these clusters caused by different functionals in detail. Given the effect of temperature, it is found that as the temperature rises, the configuration with irregular shape will become more stable. By analyzing the infrared spectra, the structure and vibration analysis of these clusters are studied in detail. Based on topological analysis, we study the relationship between structural characteristics and the bonding strengths, and analyze the strength of hydrogen bonding at the bond critical points.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.