Abstract
The results presented in this paper are the ab initio intermolecular potentials and the second virial coefficient, B2 (T) of the dimer Cl2-Cl2. These ab initio potentials were proposed by the quantum chemical calculations at high level of theory CCSD (T) with basis sets of Dunning's valence correlation-consistent aug-cc-pVmZ (m = 2, 3); these results were extrapolated to complete basis set limit aug-cc-pV23Z. The ab initio energies of complete basis set limit aug-cc-pV23Z resulted from the exponential extrapolation were used to construct the 5-site pair potential functions. The second virial coefficients for this dimer were predicted from those with four-dimensional integration. The second virial coefficients were also corrected to first-order quantum effects. The results turn out to be in good agreement with experimental data, if available, or with those from empirical correlation. The quality of ab initio 5-site potentials proved the reliability for prediction of molecular thermodynamic properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.