Abstract
A new computational scheme integrating multi-center ab initio molecular orbitals for determining total energy and normal vibration of large cluster systems is presented. This method can be used to treat large cluster systems such as solvents by quantum mechanics. The geometry parameters, the total energies, the relative energies, and the normal vibrations for four models of water cluster, the hydrated hydronium ion complex, and the transition state of proton transfer are calculated by the present method and are compared with those obtained by the full ab initio MO method. The results agree very well. The scheme proposed in this article is also intended to be used in modeling computer cluster systems using parallel algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.