Abstract

Various geometry optimization techniques are systematically investigated. The rational function (RF) and direct inversion in the iterative subspace (DIIS) methods are compared and optimized for the purpose of geometry optimization. Various step restriction and line search procedures are tested. The model Hessian recently proposed by Lindh et al. has been used in conjunction with different Hessian update procedures. Optimization for over 30 molecules have been performed in Z-matrix coordinates, local normal coordinates, and curvilinear natural internal coordinates, using the same approximations for the Hessian in all cases. The most effective and stable procedure for optimization of equilibrium structures was found to be the DIIS minimization in natural internal coordinates using the BFGS update of the model Hessian. Our method shows faster overall convergence than all previously published methods for the same test suite of molecules. © 1997 John Wiley & Sons, Inc. J Comput Chem 18: 1473–1483, 1997

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.