Abstract

We have developed a novel ab initio Gamow in-medium similarity renormalization group (Gamow IMSRG) in the complex-energy Berggren framework. The advanced Gamow IMSRG is capable of describing the resonance and nonresonant continuum properties of weakly bound and unbound nuclear many-body systems. As test grounds, carbon and oxygen isotopes have been calculated with chiral two- and three-nucleon forces from the effective field theory. Resonant states observed in the neutron-dripline 24O are well reproduced. The halo structure of the known heaviest Borromean nucleus 22C is clearly seen by calculating the density distribution in which the continuum s channel plays a crucial role. Furthermore, we predict low-lying resonant excited states in 22C. The Gamow IMSRG provides tractable ab initio calculations of weakly bound and unbound open quantum systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call