Abstract

The problem of protein tertiary structure prediction from primary sequence can be separated into two subproblems: generation of a library of possible folds and specification of a best fold given the library. A distance geometry procedure based on random pairwise metrization with good sampling properties was used to generate a library of 500 possible structures for each of 11 small helical proteins. The input to distance geometry consisted of sets of restraints to enforce predicted helical secondary structure and a generic range of 5 to 11 Å between predicted contact residues on all pairs of helices. For each of the 11 targets, the resulting library contained structures with low RMSD versus the native structure. Near-native sampling was enhanced by at least three orders of magnitude compared to a random sampling of compact folds. All library members were scored with a combination of an all-atom distance-dependent function, a residue pair-potential, and a hydrophobicity function. In six of the 11 cases, the best-ranking fold was considered to be near native. Each library was also reduced to a final ab initio prediction via consensus distance geometry performed over the 50 best-ranking structures from the full set of 500. The consensus results were of generally higher quality, yielding six predictions within 6.5 Å of the native fold. These favorable predictions corresponded to those for which the correlation between the RMSD and the scoring function were highest. The advantage of the reported methodology is its extreme simplicity and potential for including other types of structural restraints.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.