Abstract

We have implemented a complete active space configuration interaction method (CASCI) based on floating occupation molecular orbitals (FOMOs) at the ab initio level. The performance of this FOMO-CASCI method was investigated for potential applications in photochemistry and photodynamics. We found that FOMO-CASCI often represents a good approximation to the state-averaged complete active space self-consistent field (SA-CASSCF) method. FOMO-CASCI is therefore an attractive alternative for use in ab initio photodynamics. The method is more efficient and more stable than SA-CASSCF. We also discuss some problematic cases for the FOMO-CASCI approach. Possible extensions of the FOMO-CASCI approach are discussed briefly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call