Abstract

Herein, we explore the potential applications of the experimentally synthesized ZrO2 monolayer as the cathode catalyst for nonaqueous lithium-oxygen batteries. First, we show that a new peroxide-like adsorption geometry is the most stable configuration for LiO2, which is distinct from the previously known O-Li-O triangular geometry. The proposed most stable adsorption configuration is because the Zr atoms in the substrate play a critical role in stabilizing the LiO2 cluster. Second, our ab initio calculations indicate that both the ORR and OER catalytic activities are most likely to adopt the four-electron mechanism with a considerably low overpotential of only 0.44 and 0.76 V, respectively. Finally, we show that the adsorption energy of Li2O2 is a good descriptor for both ORR and OER catalytic activities, and weak Li2O2 adsorption behavior is positively related to low overpotentials and satisfactory catalytic performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call