Abstract

Discovering new materials with ultrahigh thermal conductivity has been a critical research frontier and driven by many important technological applications ranging from thermal management to energy science. Here we have rigorously investigated the fundamental lattice vibrational spectra in ternary compounds and determined the thermal conductivity using a predictive ab initio approach. Phonon transport in B-X-C (X = N, P, As) groups is systematically quantified with different crystal structures and high-order anharmonicity involving a four-phonon process. Our calculation found an ultrahigh room-temperature thermal conductivity through strong carbon-carbon bonding up to 2100 W/mK beyond most common materials and the recently discovered boron arsenide. This study provides fundamental insight into the atomistic design of thermal conductivity and opens up opportunities in new materials searching towards complicated compound structures. DOI: 10.1103/PhysRevB.103.L041203

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.