Abstract

Ab initio density functional theory (DFT), previously applied primarily at the second-order many-body perturbation theory (MBPT) level, is generalized to selected infinite-order effects by using a new coupled-cluster perturbation theory (CCPT). This is accomplished by redefining the unperturbed Hamiltonian in ab initio DFT to correspond to the CCPT2 orbital dependent functional. These methods are applied to the Be-isoelectronic systems as an example of a quasidegenerate system. The CCPT2 variant shows better convergence to the exact quantum Monte Carlo correlation potential for Be than any prior attempt. When using MBPT2, the semicanonical choice of unperturbed Hamiltonian, plays a critical role in determining the quality of the obtained correlation potentials and obtaining convergence, while the usual Kohn-Sham choice invariably diverges. However, without the additional infinite-order effects, introduced by CCPT2, the final potentials and energies are not sufficiently accurate. The issue of the effects of the single excitations on the divergence in ordinary OEP2 is addressed, and it is shown that, whereas their individual values are small, their infinite-order summation is essential to the good convergence of ab initio DFT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.