Abstract

The energetic parameters, such as density, bond strength, and sensitivity of explosives/ propellants decide their detonation power and safety. Experimentally, optimization of these parameters is found to be a difficult task; therefore, prior to synthesis, it makes sense to estimate these parameters by computational techniques, ab initio crystal structure prediction, and quantum chemical calculation coupled with the AIM analysis. Here, we predict the density of an energetic 2,4-dinitrobenzoic acid (DNBA) molecule from different ab initio crystal structure models and validate the results through comparisons with experimental data. The bond topological characterization reveals that the C NO2 bonds are the weakest bonds and are identified as sensitive bonds in the molecule. The bond sensitivity is estimated from Murray’s method. The impact sensitivity of this molecule is also calculated. Large negative electrostatic potential regions are found near the NO2 and carboxylic groups, which are the reactive sites of the molecule.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.