Abstract

The interconversion of model compounds {[(NH3)3Cu]2(μ-η2:η2-O2)}2+ (1) and {[(NH3)3Cu]2(μ-O)2}2+ (2) has been examined using multireference second-order perturbation theory with an 8-electron/8-orbital active space. At this level of theory, 1 and 2 are separated by only 0.3 kcal/mol, and the barrier to isomerization is predicted to be very low based on single-point energy calculations for intermediate structures. The flat nature of the potential energy surface along the interconversion coordinate derives from a balancing of Coulomb forces and nondynamic electron correlation. The latter effect depends critically on the significant energy change experienced by the 13au virtual orbital on passing from one isomer to the other. In addition, solvation electrostatics favor 2 over 1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.