Abstract

The formation of spiropentane, by addition of singlet (1A1) methylene to methylenecyclopropane, and the unimolecular reactions of spiropentane have all been studied computationally. Benchmark calculations on two key biradicals were conducted by the multireference Mukherjee's coupled-cluster (MkCC) method. Various single-reference coupled-cluster methods and multireference second-order perturbation theory were then compared for accuracy against experimental data and the MkCC results. The object of the exercise was to get the best possible description of the potential energy surface for formation and reactions of spiropentane, as a prelude to molecular dynamics simulation of the reactions. The principal conclusions of the study were that none of the unimolecular reactions of spiropentane can be classified as pericyclic processes and that the observed stereoselectivities are probably of dynamical origin. A possible resolution of a disagreement between two studies on the dynamics of cyclopropanation reactions is also offered. Of the various approximate computational models evaluated in this study, the best fit came from a composite coupled-cluster approach in which the lower-energy result was selected from a restricted coupled-cluster and a broken-symmetry, unrestricted coupled-cluster calculation on each stationary point. However, such an approach is not strictly defensible, since coupled-cluster methods are not variational, and so further evaluation of its validity would be desirable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call