Abstract
The (2)Delta and (4)Sigma (-) excited states of Ga .N-2, which were assigned by Ellis et al. (Phys. Chem. Chem. Phys. 1999, 1, 2709) to the upper states of two LIF transitions observed from the Ga .N-2 (X) over tilde (2)Pi State with onsets of 33468 and 37633 cm(-1), respectively, have been studied by high-level ab initio calculations. Minimum-energy geometrical parameters, harmonic vibrational frequencies, and relative energies were computed at the SERHF, CASSCF, B3LYP, MP2, QCISD, and CCSD(T) levels of calculation, using standard and specifically designed, all-electron and ECP (for Ga) basis sets of up to aug-cc-pVQZ quality. In addition, the low-lying linear (4)Pi and a number of T-shaped quartet states of Ga .N-2 were also studied. Franck-Condon factors (FCFs) of selected electronic transitions were calculated. Absorption spectra were simulated by employing the computed FCFs. On the basis of ab initio results and spectral simulations, the assignment of the 33468 cm(-1) LIF band is concluded to be the (2)Delta (3/2) 200 cm(-1)). In addition, all low-lying Ga .N-2 quartet states considered were found to be either very weakly bound van der Waals states (Ga-N bond length ca. 5 Angstrom) or well-bound charge transfer states, and none of them can be assigned to the upper state of this LIF band. Doubts concerning the identity of the molecular carrier and the electronic states involved in this LIF band remain. Finally, the stabilities of the charge-transfer quartet states of Ga .N-2 investigated in this work have been rationalized in terms of bonding interaction between the HOMOs of Ga and the LUMOs of N-2 and electrostatic attraction resulting from charge transfer from Ga to N-2. Possible applications of this kind of bonding and charge-transfer interactions in an M .N-4 ring system have been discussed briefly in relation to stabilizing an N-n system, where M .N-n represents a potential high energy density material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.