Abstract

A systematic theoretical investigation on a series of dimeric complexes formed between some halocarbon molecules and electron donors has been carried out by employing both ab initio and density functional methods. Full geometry optimizations are performed at the Moller-Plesset second-order perturbation (MP2) level of theory with the Dunning's correlation-consistent basis set, aug-cc-pVDZ. Binding energies are extrapolated to the complete basis set (CBS) limit by means of two most commonly used extrapolation methods and the aug-cc-pVXZ (X = D, T, Q) basis sets series. The coupled cluster with single, double, and noniterative triple excitations [CCSD(T)] correction term, determined as a difference between CCSD(T) and MP2 binding energies, is estimated with the aug-cc-pVDZ basis set. In general, the inclusion of higher-order electron correlation effects leads to a repulsive correction with respect to those predicted at the MP2 level. The calculations described herein have shown that the CCSD(T) CBS limits yield binding energies with a range of -0.89 to -4.38 kcal/mol for the halogen-bonded complexes under study. The performance of several density functional theory (DFT) methods has been evaluated comparing the results with those obtained from MP2 and CCSD(T). It is shown that PBEKCIS, B97-1, and MPWLYP functionals provide accuracies close to the computationally very expensive ab initio methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.