Abstract

The equilibrium geometries and harmonic vibrational frequencies of three low-lying triplet excited states of vinyl chloride have been calculated using the state-averaged complete active space self-consistent field (CASSCF) method with the 6-311++G(d,p) basis set and an active space of four electrons distributed in 13 orbitals. Both adiabatic and vertical excitation energies have been obtained using the state-averaged CASSCF and the multireference configuration-interaction methods. The potential-energy surfaces of six low-lying singlet states have also been calculated. While the 3(pi, pi*) state has a nonplanar equilibrium structure, the 3(pi, 3s) and 3(pi, sigma*) states are planar. The calculated vertical excitation energy of the 3(pi, pi*) state is in agreement with the experiment. The singlet excited states are found to be multiconfigurational, in particular, the first excited state is of (pi, 3s) character at the planar equilibrium structure, of (pi, sigma*) as the C-Cl bond elongates, and of (pi, pi*) for highly twisted geometries. Avoided crossings are observed between the potential-energy surfaces of the first three singlet excited states. The absorption spectra of vinyl chloride at 5.5-6.5 eV can be unambiguously assigned to the transitions from the ground state to the first singlet excited state. The dissociation of Cl atoms following 193-nm excitation is concluded to take place via two pathways: one is through (pi, sigma*) at planar or nearly planar structures leading to fast Cl atoms and the other through (pi, pi*) at twisted geometries from which internal conversion to the ground state and subsequent dissociation produces slow Cl atoms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.