Abstract

Growth of large-area, few-layer graphene has been reported recently through the catalytic decomposition of methane (CH(4)) over a Cu surface at high temperature. In this study, we used ab initio calculations to investigate the minimum energy pathways of successive dehydrogenation reactions of CH(4) over the Cu (111) surface. The geometries and energies of all the reaction intermediates and transition states were identified using the climbing image nudged elastic band method. The activation barriers for CH(4) decomposition over this Cu surface are much lower than those in the gas phase; furthermore, analysis of electron density differences revealed significant degrees of charge transfer between the adsorbates and the Cu atoms along the reaction path; these features reveal the role of Cu as the catalytic material for graphene growth. All the dehydrogenation reactions are endothermic, except for carbon dimer (C(2)) formation, which is, therefore, the most critical step for subsequent graphene growth, in particular, on Cu (111) surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call