Abstract

Graphene is a promising candidate as a material used in nano-scale devices because of recent developments in advanced experimental techniques. Motivated by recent successful fabrications of U-shaped graphene channel transistors by using the gallium focused ion beam technology, we have performed ab-initio calculations to investigate the electronic properties and quantum transport in U-shaped graphene nanoribbons. The electronic properties are calculated using a numerical atomic orbital basis set in the framework of the density functional theory. The transport properties are investigated using the non-equilibrium Green's function method. The transmission spectra of U-shaped graphenes are analyzed in order to reveal the quantum transport of the systems. We found that the graphene nanoribbons tend to open a band gap when U-shaped structures are formed in both armchair and zigzag cases. The geometrical structures of U-shaped GNRs had enormous influences on the electron transport around the Fermi energy due to the formation of quasi-bound states at zigzag edges. The obtained results have provided valuable information for designing potential nano-scale devices based on graphenes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call