Abstract

We report high level ab initio calculations (treating correlation by second order Möller–Plesset perturbation theory, MP2) of a five-dimensional normal coordinate subspace of the potential and electric dipole hypersurfaces of the Cs conformer of dideuteromethanol, CD2HOH. Accurate vibrational variational calculations are carried out using a discrete variable representation (DVR) for the five anharmonically coupled modes (three coupled CH stretching and bending modes and the OH stretching and high frequency OH bending mode). The overtone spectra of the OH chromophore are calculated and analyzed in detail with respect to their anharmonic resonance dynamics leading to short time intramolecular vibrational redistribution (IVR) via the close resonance coupling of 5νOH (5ν1) with 4νOH+νCH(4ν1+ν2), as previously observed and assigned experimentally. While the assignment of the resonance is confirmed by the ab initio calculation, a sequence of calculations including various subspaces (two-dimensional to five-dimensional) lead to the conclusion that the resonance contains important contributions from coupling to the various bending modes, not just involving the CH– and OH stretching modes. Furthermore, even in the two-dimensional subspace the effective coupling constants k1112 and k1222 characterizing the resonance are not identical with the anharmonic potential constants C1112 and C1222 in the Taylor expansion of the potential, but rather an expansion to sixth order is needed to describe the resonance quantitatively. A similar conclusion holds true with other low order perturbation expansions of the resonance coupling, involving sequences of cubic couplings to other modes. We furthermore predict important resonances between OH stretching and OH bending also involving CH bending modes, which contribute to IVR at higher levels of excitation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.