Abstract

Relativistic restricted active space (RAS) second-order multireference perturbation theory (MRPT2) methods, incorporating spin-orbit (SO) coupling perturbatively via state interaction (SO-MRPT2/RASSCF), were used to reproduce the absorption spectra of parent metalloporphyrins containing the Mg2+, Zn2+, Co2+, Ni2+, Cu2+, or FeCl2+ ions in the 12,500-40,000 cm-1 region. Particular attention was paid to the interaction between the porphyrin ring and the metal 3d electrons in states of different multiplicities (we used metal 3d and double d-shell or 3d' orbitals). For this class of compounds, the N-electron valence state perturbation theory (NEVPT2) method is superior to the complete active space perturbation theory (CASPT2) and successfully reproduces the energies of all four characteristic transitions (Q, B, N, and L) of closed-shell metalloporphyrins. Inclusion of SO coupling was found to have very little effect on excitation energies and oscillator strengths. For FeCl2+ porphyrin, we treated ligand-to-metal charge-transfer (LMCT; π,d), metal ligand field (d,d), and metal-to-ligand charge-transfer (MLCT; d,π*) transitions within the same framework. The broad and intense spectral features associated with its B (Soret) band are attributed to multiconfigurational LMCT (d,π*) bands involving strong metal-ligand orbital mixing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call