Abstract
We present a method to calculate total X-ray scattering cross sections directly from ab initio electronic wave functions in atoms and molecules. The approach can be used in conjunction with multiconfigurational wave functions and exploits analytical integrals of Gaussian-type functions over the scattering operator, which leads to accurate and efficient calculations. The results are validated by comparison to experimental results and previous theory for the molecules H2 and CO2. Importantly, we find that the inelastic component of the total scattering varies strongly with molecular geometry. The method is appropriate for use in conjunction with quantum molecular dynamics simulations for the analysis of new ultrafast X-ray scattering experiments and to interpret accurate gas-phase scattering experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.