Abstract

The frequency-dependent interaction induced polarizability and second hyperpolarizability of the argon dimer are computed for a range of internuclear distances employing the coupled cluster singles and doubles response approach. The frequency dependence of the interaction-induced properties is treated through second order in the frequency arguments using expansions in Cauchy moments and hyperpolarizability dispersion coefficients. The dielectric, the refractivity, the Kerr and the hyperpolarizability second virial coefficients are computed for a range of temperatures employing a recent accurate ab initio potential for the ground state of the argon dimer. For most of the computed virial coefficients good agreement is obtained between the present ab initio results and the available experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.