Abstract

The thermodynamic limit of photovoltaic efficiency for a single-junction solar cell can be readily predicted using the bandgap of the active light absorbing material. Such an approach overlooks the energy loss due to non-radiative electron-hole processes. We propose a practical ab initio procedure to determine the maximum efficiency of a thin-film solar cell that takes into account both radiative and non-radiative recombination. The required input includes the frequency-dependent optical absorption coefficient, as well as the capture cross sections and equilibrium populations of point defects. For kesterite-structured Cu2ZnSnS4, the radiative limit is reached for a film thickness of around 2.6 μm, where the efficiency gain due to light absorption is counterbalanced by losses due to the increase in recombination current.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call