Abstract

We present a comprehensive theoretical study of the structure and NMR parameters of a large number of triazine and heptazine based structure proposals for g-C3N4 in different condensation states. This approach includes a detailed investigation of cyclic melon which tends toward the formation of densely packed hydrogen bonded meshes. In all of the investigated systems, we found planar layers to represent saddlepoints on the energy surface, whereas corrugated species were identified as minima. The corrugation source was linked to the repulsion of nitrogen lone pairs in close NN contacts. A linear dependency of the corrugation energy from the number of NN interactions in the investigated clusters was found. Heptazine based systems gain about twice as much energy per NN close contact in comparison to triazine structures which could be understood in terms of the distortion mechanism in the investigated structures. Furthermore, a full study of the 15N and 13C chemical shift tensors was performed for the different C/N layers. The description of the NMR parameters required dividing the investigated systems into subclusters for which the NMR tensors were calculated with density functional theory (DFT) methods. A statistical analysis of these entities allowed for the investigation of the change in the chemical shift upon corrugation and, in the case of the cyclic melon system, hydrogen bonding. With the here presented study, the most prominent structure models for g-C3N4 are characterized in terms of the 15N and 13C NMR parameters which now can directly be compared to experimental spectra.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.