Abstract

We present calculations of time-dependent photoelectron spectra of NO2 after excitation to the A-band for comparison with extreme-ultraviolet (XUV) time-resolved photoelectron spectroscopy. We employ newly calculated potential energy surfaces of the two lowest-lying coupled 2A' states obtained from multi-reference configuration-interaction calculations to propagate the photo-excited wave packet using a split-step-operator method. The propagation includes the nonadiabatic coupling of the potential surfaces as well as the explicit interaction with the pump pulse centered at 3.1 eV (400 nm). A semiclassical approach to calculate the time-dependent photoelectron spectrum arising from the ionization to the eight energetically lowest-lying states of the cation allows us to reproduce the static experimental spectrum up to a binding energy of 16 eV and enables direct comparisons with XUV time-resolved photoelectron spectroscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.