Abstract

Ab initio calculations, based on the density functional theory (DFT) in the local density approximation (LDA), allow for the description of the ground state properties of a wide class of materials. Also one-quasiparticle excitations can be obtained with good precision by adding self-energy corrections to the DFT-LDA eigenvalues. A realistic description of two-particle excitations, like the creation of electron-hole pairs in absorption experiments, is hardly feasible for systems where the electron and the hole interact. In this work we show how such excitonic effects can be included in ab initio electronic structure calculations, via the solution of an effective two-particle equation. Results for different systems are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.