Abstract

Among the different theoretical models of the open-site-driven DNA-denaturation found in the literature, very few interests are actually paid to the fundamental unzipping process of the double-stranded DNA within the vicinity of its ground state condensate. In this paper, we address an alternative to better understand the process of denaturation of such a macromolecule by investigating the onset of its dynamics around its equilibrium state. We show that from the initiation of the transcription bubble by the promoter to the termination state, the open-states of the strands evolve dynamically while generating some localized waveguide channels with elastic scattering properties. We properly discuss the nonlinear dynamics of these structures within the viewpoint of the self-mechanical theory while inferring to the physical structure of the findings and their potential issues.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.