Abstract

The microscopic transport processes of an excess electron in bulk water are studied using hybrid ab initio molecular dynamics calculations. In contrast to the typical cavity obtained with solvated anions, the electron cavity structure is found to be much more variable, with water molecules easily exchanging at the surface of the cavity. The microscopic mechanism of electron transport involves a novel sequence of opportunistic electron redistributions driven by a positive feedback between thermal fluctuations and the attraction of the electron to hydrogen atoms that are not saturated in hydrogen bonding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.