Abstract

We present an $\textit{ab initio}$ study of the thermodynamic properties of cubic CaSiO$_3$ perovskite (CaPv) over the pressure and temperature range of the Earth's lower mantle. We compute the anharmonic phonon dispersions throughout the Brillouin zone by utilizing the phonon quasiparticle approach, which characterizes the intrinsic temperature dependence of phonon frequencies and, in principle, captures full anharmonicity. Such temperature-dependent phonon dispersions are used to calculate $\textit{ab initio}$ free energy in the thermodynamic limit ($N \rightarrow \infty$) within the framework of the phonon gas model. Accurate free energy calculations enable us to investigate cubic CaPv's thermodynamic properties and thermal equation of state, where anharmonic effects are demonstrated. The present methodology provides an important theoretical approach for exploring phase boundaries, thermodynamic, and thermoelastic properties of strongly anharmonic materials at high pressures and temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.