Abstract
Lignocellulosic biomass is an abundant renewable resource that can be upgraded to chemical and fuel products through a range of thermal conversion processes. Fast pyrolysis is a promising technology that uses high temperatures and fast heating rates to convert lignocellulose into bio-oils in high yields in the absence of oxygen. Hemicellulose is one of the three major components of lignocellulosic biomass and is a highly branched heteropolymer structure made of pentose, hexose sugars, and sugar acids. In this study, β-d-xylopyranose is proposed as a model structural motif for the essential chemical structure of hemicellulose. The gas-phase pyrolytic reactivity of β-d-xylopyranose is thoroughly investigated using computational strategies rooted in quantum chemistry. In particular, its thermal degradation potential energy surfaces are computed employing Minnesota global hybrid functional M06-2X in conjunction with the 6-311++G(d,p) Pople basis set. Electronic energies are further refined by performing DLPNO-CCSD(T)-F12 single-point calculations on top of M06-2X geometries using the cc-pVTZ-F12 basis set. Conformational analysis for minima and transition states is performed with state-of-the-art semiempirical quantum chemical methods coupled with metadynamics simulations. Key thermodynamic quantities (free energies, barrier heights, enthalpies of formation, and heat capacities) are computed. Rate coefficients for the initial steps of thermal decomposition are computed by means of reaction rate theory. For the first time, a detailed elementary reaction kinetic model for β-d-xylopyranose is developed by utilizing the thermodynamic and kinetic information acquired from the aforementioned calculations. This model specifically targets the initial stages of β-d-xylopyranose pyrolysis in the high-pressure limit, aiming to gain a deeper understanding of its reaction kinetics. This approach establishes a systematic strategy for exploring reactive pathways, evaluating competing parallel reactions, and selectively accepting or discarding pathways based on the analysis. The findings suggest that acyclic d-xylose plays a significant role as an intermediary in the production of key pyrolytic compounds during the pyrolysis of xylose. These compounds include furfural, anhydro-d-xylopyranose, glycolaldehyde, and dihydrofuran-3(2H)-one.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.