Abstract

1) Protonation at all possible sites of adamantane (C(10)H(16)) was studied at the MP2/6-311++G(3df,2p)//MP2/6-311++G(d,p) level. This provided values of the changes in the thermodynamic state functions for these processes. Whenever direct comparison was possible, the agreement with experimental data was very good. 2) By the same means, the reaction paths linking the various species obtained in these reactions were analyzed. 3) Fourier transform ion cyclotron resonance (FT-ICR) spectroscopy was used to determine the rate constants for proton transfer from 16 protonated reference bases to adamantane in the gas phase. Also, the rate constants for the formation of ionic products in these reactions were determined. 4) The experimental reaction rates were successfully predicted and refined on the basis of a simple mechanistic model based on the reaction profiles indicated above. 5) Our results hint at the potential usefulness of this approach for mechanistic studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.