Abstract

The molecular mechanism for the 1,3-dipolar cycloaddition of nitrone with sulfonylethene chlorides has been studied using ab initio and DFT methods at the HF, MP2 and B3LYP levels together with the 6-31G* basis set. Relative rates, stereo and regioselectivity, have been analysed and discussed. For this cycloaddition four reactive channels associated with the formation of two pairs of diastereoisomeric regioisomers have been characterized. Analysis of the geometries of the corresponding transition structures shows that the cycloaddition takes place along a concerted but asynchronous mechanism. Activation energies as asynchronicity are dependent on the computation level. Thus, while HF calculations gave large barriers, MP2 calculations tend to underestimate them. DFT calculations gave reasonable values. These 1,3-dipolar cycloadditions present an endo stereoselectivity while the meta regioselectivity depends on the computational level. Thus, while HF and DFT calculations predict meta path, in agreement with the experimental results, MP2 calculation predict ortho regioselectivity. The frontier molecular orbitals analysis shows that the reaction is controlled by the (HOMO dipole–LUMO dipolarophile) interaction in agreement with the charge transfer analysis carried out at the transition structures. Inclusion of diffuse functions at the B3LYP/6-31+G* level increases the energy barriers about 4 kcal/mol, giving a similar endo/ meta selectivity. Solvent effects have been taken into account, by means of self-consistent reaction field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call