Abstract

Vascular endothelial growth factor receptor-2 (VEGFR-2); a cell surface receptor for vascular endothelial growth factors, is a key pharmacological target involved in the cell proliferation/angiogenesis. It has been revealed that VEGFR-2 induces proliferation through activation of the extracellular signal-regulated kinases pathway. In this regard, targeting the VEGFR-2 has been considered as an efficient route to develop anti-tumor agents. Motesanib is a small-molecule antagonist of VEGFR-1, 2, and 3 (IC50s; 2 nM, 3 nM, 6 nM, respectively). It is an experimental drug candidate undergoing clinical trials against some types of cancer. In the present study, Motesanib (AMG 706) was evaluated in terms of its binding energies with individual amino acids of VEGFR-2 active site (amino acid decomposition analysis). For this purpose, functional B3LYP associated with split valence basis set using polarization functions (Def2-SVP) was used. Comparative conformational analysis of the ligand in optimized and crystallographic states revealed that Motesanib does not necessarily bind to the VEGFR-2 active site in its minimum energy conformer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.