Abstract

The complex nature of Alzheimer's disease (AD) makes it difficult to understand the exact molecular processes leading to neuron death. However, two molecular factors - the production of amyloid-beta plaques and tau tangles - are considered to be linked to AD. A genetic marker for brain atrophy, FAM222A, has been identified by the unique cross-phenotype meta-analysis of genetics imaging and the molecular features show an interaction between the protein aggregatin encoded by FAM222A and amyloid beta (Aβ)-peptide (1-42) via its N-terminal Aβ binding domain, thus increasing Aβ aggregation. Function of Aggregatin protein is unclear, and its 3D structure has not been investigated in experimental analysis, so far. Hence, in the present study, first time in literature, 3D models of FAM222A-encoded Aggregatin were systematically constructed by applying diverse homology modeling approaches and they were used as target structures at the virtual screening of FDA-approved drugs and drugs currently under research in clinical trials. Then, the identified hit molecules were chosen for further molecular dynamics (MD) simulations and post-MD analyses. Our integrated ligand-based and protein-driven-based virtual screening results show that Cefpiramide, Diniprofylline, Fostriecin, and Droperidol may target Aggregatin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.