Abstract

In recent years, the ClO free radical has been found to play an important role in the ozone removal processes in the atmosphere. In this work, the authors present a potential energy surface scan of the ClO.H2O system with high-level ab initio methods. Because of the existence of low-lying excited states of the ClO.H2O complex and their potential impact on the chemical behavior of the ClO radical in the atmosphere, the authors perform the potential energy surface scan at the CCSD(T)/aug-cc-pVTZ level of theory of both the first excited and ground states. Analytical potentials for both ground and excited states, with the ClO and H2O units held fixed at their optimized geometries and with anisotropic atomic polarizabilities modeling the physics of the unpaired electron in the ClO radical, were built based on a Thole-type model. The two minima of the ClO.H2O complex are recovered by the analytical potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.