Abstract

AbstractKinetic data on the enolization reaction of 3‐acetyl‐5‐methylisoxazole, 5‐acetyl‐3‐methylisoxazole, 3(5)‐acetylpyrazole and some previously studied acetylheterocycles have been the object of a comprehensive ab initio analysis. Enolization rate constants were measured spectrophotometrically by the halogen trapping technique at 25 °C and ionic strength of 0.3 mol dm−3 in water, in acetate buffers, in dilute hydrochloric acid, in dilute sodium hydroxide and in the presence of some metal ion salts. In the spontaneous (water) and base (acetate) catalysed reactions the ketones investigated are generally more reactive than acetophenone, according to the electron‐withdrawing effect of the heterocyclic ring compared with the benzene ring. In particular, acetylisoxazoles, 3(5)‐acetylpyrazole and acetylthiazoles are more reactive than acetylfurans, 2‐acetylpyrrole and acetylthiophenes respectively, and this can be attributed to the additional effect of the second heteroatom in the heterocyclic moiety. On the other hand, the compounds investigated are generally less reactive than acetophenone in the H3O+‐catalysed reaction. Ab initio calculations on the relative stability of the protonated and unprotonated forms of the substrates investigated have been compared with the kinetic results obtained in acid solutions. As far as the metal ion catalysis is concerned, an approach in terms of ΔΔE can give an estimate of the combined contributions of charge densities and frontier orbitals to the interaction of the substrate with the metal ion catalyst. A comparison of experimental metal activating factor values and ab initio calculations outlines the importance of charge density on the carbonyl oxygen atom of acetylheterocycles with one heteroatom. An analogous comparison for acetylheterocycles with two heteroatoms suggests the formation of a chelate complex or transition state, in which the metal ion coordinates both the carbonyl oxygen and the aza nitrogen, whenever these two atoms are suitably placed within the molecular structure of the acetylheterocycle. Copyright © 2002 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.